Responsible partner:
»University of Miguel Hernández (UMH) 
Authors: Fuensanta Garcia, Jorge Mataix Solera 
iSQAPERiS editor: Jane Brandt

 

Contents table
1. Video and infographic
2. Study site description
3. Participation of stakeholders in the iSQAPER research programme
4. Research tasks
5. Long-term impact of iSQAPER's research programme in the study site

1. Video and infographic

El equipo de la zona de estudio del SE de España realizó un video corto y una infografía para describir la importancia de la calidad del suelo y una serie de prácticas de manejo beneficiosas utilizadas localmente.

A short video and an infographic were made by the SE Spain study site team to describe the importance of good soil quality and a number of locally used beneficial management practices.

  Vídeo Video
video 04 screenshot sq

»La importancia de la buena calidad del suelo.
El suelo es un recurso que tarda mucho tiempo en formarse y puede degradarse fácilmente. El suelo no es renovable a escala temporal humana. El suelo nos proporciona alimentos y regula los ecosistemas terrestres. La conservación del suelo es muy importante para mantener su calidad y propiedades. Este es el objetivo principal del proyecto iSQAPER (Evaluación interactiva de la calidad del suelo es mantener la calidad del suelo con una agricultura sostenible). Para tener una buena salud debemos mantener la calidad del suelo. Cuida el suelo para mejorar tu calidad de vida.
(en inglés con subtítulos en español)

»The importance of good soil quality
Soil is a resource that that takes a long time to form and can easily degrade. Soil is not renewable on a human time scale. Soil provides us with food and regulates terrestrial ecosystems. Soil conservation is very important to maintain its quality and properties. The main objective of Interactive Soil Quality Assessment is to maintain soil quality for sustainable agriculture. For good health we must maintain the quality of the soil. Take care of soil to improve your life quality.
(in English with Spanish subtitles)

  Infografía Infographic
video 04 screenshot sq

»Prácticas agrícolas sostenibles del Sureste Español
Se ilustran y describen el mulching (acolchados), la rotación de cultivos, la aplicación de compost, el laboreo mínimo, la agricultura orgánica y el mantenimiento de una cubierta vegetal se ilustran y describen.
(en español)

»Sustainable agricultural practices from southeast Spain
Mulching, crop rotation, application of compost, reduced tillage, organic agriculture and maintaining a vegetation cover are illustrated and described.
(in Spanish)

 

 2. Study site description

Location

The area of the study is located in the south-eastern of the Spain, enclosing study sites in Alicante, Valencia and Murcia provinces. The climate is typically Mediterranean, with 3-5 months of summer drought, usually from June to September with a mean annual precipitation ranging from 200-500 mm and a mean annual temperature of 16ºC. The area has an important agricultural activity, with the main crops being citrus in the lowest areas (under irrigation), and olive, almonds, vegetables, fruits and vineyards elsewhere (usually rainfed). Cereals are also grown. There has been an expansion of citrus crops in the last few years, with the transformation of dry crops and forest area into irrigated agricultural land.

SS04 SS04 fig05 SS04 fig05 SS04 fig10 SS04 fig10 SS04 fig12 SS04 fig12

Main farming systems and typical agricultural management activities in the study area

The main crops are citrus plantations, rainfed vegetables, olive, vineyards, fruits and cereals. Rainfed areas are triggering high erosion rates, and also the new orange plantations increase soil losses. It is common practice to use wastewater and water rich in salt due to scarcity of water in this area, and in some agricultural areas this has a high impact on the soil with important loss of structure. Traditionally the main system of farming is based on the use of inorganic fertilizers and intensive tillage. As a consequence, it is has been noticed that the aquifer of the area is contaminated with specific pollutants. In recent years, an organic farming system with soil cover provided by leguminous species and pruning remains has been introduced. The use of adventitious plants and manure from sheep and goats are also being introduced in vineyards.

Characteristic soils and soil quality monitoring practice

Lithologies and soils are diverse, but soils are mainly developed under calcareous materials (limestone, marls), and on quaternary sediments. In the WRB (2010) classification they are mainly Regosols, Cambisols, Calcisols and Luvisols. Agricultural land management is one of most significant anthropogenic activities in the south of Spain that greatly alters soil characteristics, including physical, chemical, and biological properties. This fact is particularly relevant in Mediterranean environments, where unsuitable land management practices together with climatic constraints (scarce and irregular rainfall and frequent drought periods) can contribute to increased rates of erosion and other degradation processes on agricultural lands. These conditions can lead to a loss in soil fertility and a reduction in the abundance and diversity of soil microorganisms. Agricultural management influences soil microorganisms and soil microbial processes by changing the quantity and quality of plant residues entering the soil and their spatial distribution, through changes in nutrients and inputs. The excessive use of pesticides can drastically modify the function and structure. The quality of soils is low as a consequence of persistent agricultural practices including: intensive tillage, irrigation on slopes, which encourages water-based erosion, use of saline waters, and excessive use of fertilizers. Furthermore, these agricultural soils are subjected to semi-arid conditions with long dry periods; in general, they have low organic content and poor soil structure.

Previous research and innovation actions on soil improvement and monitoring

  • Research the evaluation of soil management practices in agricultural areas specially focuses in soil microbial activity (PLFA’s content, Microbial Biomass Carbon, Basal Soil Respiration rate, DNA isolation, enzymatic activities) (GEA-UMH in collaboration CEBAS-CSIC)
  • Monitoring soil quality under different agricultural management (biological, physical or chemical indicators) (GEA-UMH).
  • Promoting the increase of the use of organic farming system (GEA-UMH In collaboration with Consellería of Agricultura and Farmers association).
  • Implement programs of education and training courses to farmers.

3. Participation of stakeholders in the iSQAPER research programme

The local stakeholders listed in Table 1 were involved throughout the duration of iSQAPER in a number of research tasks including: providing experimental sites for the soil quality assessment and agricultural management practice evaluation; testing and evaluating SQAPP; and attending demonstration workshops.

Table 1: Local stakeholders involved in the iSQAPER research programme

Stakeholder type Locations Institution  Number and gender M/F Role
Farmers, land managers Alicante Valencia Murcia  Pago-Casa Gran; Frutas García-Vargas; Cooperativa cítricos Bigastro. Frutas Coloma. etc.  14M 2F  Landowner and land manager (majority), land worker, product retailer, service consumer 
Advisors Elche-Alicante Alicante  Comunidad de regantes Carrizales Cooperativas Agroalimentarias  2M 2F  Support the farmers providing technical persons, product certification and distribution channel for agricultural production 
Policy-makers Elx (Alicante) Alicante  Estación Experimental Agraria (IVIA) Consellería de Agricultura (Delegación de Alicante)  1M 1F  Develop rules and new policy to promote the sustainable agriculture in Valencian Community 
Researchers Elche-Alicante  Universidad Miguel Hernández  2M 3F  Research on soil science

4. Research tasks

Soil quality assessment and agricultural management practice evaluation

Based on WOCAT database (www.wocat.net), iSQAPER selected 18 promising agricultural management practices (AMPs) with potential to improve soil quality (»Agricultural management practices in the iSQAPER study sites). Twelve examples of a number of these AMPs were identified in the SE Spain study site that conformed to the following criteria:

  1. the promising management practice has been implemented for at least 3 years;
  2. at least 2 different soil types are represented; and
  3. at least in 2 different first level Farming Systems (arable, permanent, grazing) are represented.

For each AMP plot, nearby control plots were also identified where the practice has not changed.

Table 2: AMPs identified in the SE Spain study site. Climatic region: Mediterranean temperate/semi-arid

Plot number Farming system  Farming system detail Soil type AMP general description AMP number*
4.1 Permanent Vineyards Cambisols Permanent soil cover / Removing less vegetation cover; Leguminous crop  3-5
4.2 Permanent Fruit trees and berry plantation Cambisols Integrated pest and disease management incl. organic agriculture  12
4.3 Arable Permanently irrigated land - Flower, fruits and vegetables Cambisols Min-till; Manuring & composting 2-7
4.4 Permanent Fruit trees and berry plantation Fluvisols Min-till; Manuring & composting 2-7
4.5 Permanent Fruit trees and berry plantation Regosols Min-till; Permanent soil cover / Removing less vegetation cover; Manuring & composting 2-3-7
4.6 Arable Permanently irrigated land - Flower, fruits and vegetables Regosols Min-till; Manuring & composting; Crop rotation / Control or change of species composition 2-7-9
4.7 Permanent Fruit trees and berry plantation Regosols Permanent soil cover / Removing less vegetation cover; Manuring & composting; Residue maintenance / Mulching 3-7-8
4.8 Arable Non irrigated arable land - Cereals Regosols No-till; Residue maintenance / Mulching

1-8

4.9 Arable Permanently irrigated land - Root crops Regosols Manuring & composting; Crop rotation / Control or change of species composition; Irrigation management 8-9-14
4.10 Permanent Oil groves Regosols Min-till; Manuring & composting 2-7
4.11 Arable Permanently irrigated land - Flower, fruits and vegetables Regosols Crop rotation / Control or change of species composition; Integrated pest and disease management incl. organic agriculture 9-12
4.12 Arable Permanently irrigated land - Flower, fruits and vegetables Cambisols Manuring & composting; Crop rotation / Control or change of species composition 7-9

*Note: see »Assessing effect of management practices on soil quality - experimental framework for the full list and descriptions of the 18 promising agricultural management practices.

A first field campaign was conducted in 2016 to evaluate the soil quality in each of the paired AMP-control plots, using visual soil assessment methods (»Visual soil and plant quality assesment). The results from this and all the other study sites were combined to determine which AMPs can be shown to have a proven positive effect on soil quality, see »Assessing effect of management practices on soil quality - experimental results.

SS04 fig07 SS04 fig07 SS04 fig04 SS04 fig04  SS04 fig13 SS04 fig13 SS04 fig14 SS04 fig14

Those practices that are innovative for Spain were also described and added to the WOCAT database

The soil assessment campaign was repeated in 2018 on the two paired plots highlighted in green in Table 2 (4.5: Min-till; Permanent soil cover / Removing less vegetation cover; Manuring & composting and 4.12: Manuring & composting; Crop rotation / Control or change of species composition) with laboratory-based measurements added to the visual soil assessments. The aim was to investigate

  • how measurements of soil quality parameters obtained from the visual assessments compared to those obtained from laboratory measurements;
  • if different AMPs affected different soil quality parameters in different ways;
  • and what impact the AMPs had on the principal soil threats.

For details of the assessment analysis methods and the results from this and all study sites see »Impact of promising agricultural management practices.

As a result of this extended analysis, the example of minimum tillage, leaving vegetal residues on the soil and applying manure to pomegranate tree crops that was exemplified in Plot 4.5 was finally selected to demonstrate the positive impact management practice can have on soil quality (see »Demonstration events in the study sites).

 WP6 4 SS04 03
Pomegranate trees under the recommended AMP
WP6 4 SS04 03 Spain_4.5
Soil properties
Spain_4.5_threa
Soil threats

This practice addresses soil salinization and soil crust formation and increases organic matter. Visual soil assessment results showed that it had a substantial positive impact on all soil quality indicators (with the exception of soil colour which did not change). This better structure correlated well with measured properties and a lower bulk density. Although electrical conductivity was higher, the value is well within the threshold for good quality status. Soil organic carbon was almost double under the AMP compared to the control and was accompanied by a substantial increase in microorganism carbon. 

SQAPP development, testing and evaluation

Of the 90 stakeholders who took part in the evaluation of the beta version of SQAPP, 11 were from the SE Spain study site. Participants were asked a series of questions relating to their expectations of SQAPP and the relevance of the soil parameters included in SQAPP, the assessment of soil threats and the suitability of the app's recommendations to their local context. The feedback and comments were combined with those from the other study sites and used in the further development of SQAPP. For details of the responses from all study sites see »Stakeholder feedback and SQAPP development.

Demonstration workshops

On 20 September 2019 a demonstration event was organized in the SE Spain study site at the University Miguel Hernández to present the major findings of iSQAPER to stakeholders and to recommend the practice of minimum tillage, leaving vegetal residues on the soil and applying manure to pomegranate tree crops as a management practice of proven benefit to soil quality. The event was attended by around 25 participants.

The results from this demonstration event and those held in the other study sites are summarized in »Demonstration events in the study sites.

WP6 4 SS04 01 WP6 4 SS04 01  WP6 4 SS04 02 WP6 4 SS04 02 WP6 4 SS04 04 WP6 4 SS04 04

 A leaflet describing the AMP was prepared to accompany the discussion.

AMP SS04 EN a
English version
AMP SS04 EN a AMP SS04 EN b
 
AMP SS04 EN b AMP SS04 ES a
Spanish version
AMP SS04 ES a AMP SS04 ES b
 
AMP SS04 ES b

 »Minimum tillage, permanent soil cover and manure application

Co-development of scenarios of future farm and soil management practices

Members of the SE Spain study site team attended and contributed to the workshop in Madrid on developing scenarios of future farming. The results are presented in »Soil management scenarios

4. Long-term impact of iSQAPER's research programme in the study site

Taking account discussions with the stakeholders and feedback from the various research tasks and events in which they took part, it is anticipated that the iSQAPER research programme could have a lasting legacy in the SE Spain study site as indicated in Table 3.

Table 3: Activities in which iSQAPER's research programme could potentially have a lasting impact in the SE Spain study site

Activity Impact level: 0 - no impact, 1 - barely noticeable to 5 - important visible impact     
0 1 2 3 4 5
Research results influencing farming practice       x    
Uptake of recommended AMPs         x  
Regular use of SQAPP   x        
Development of new or enhancement of existing stakeholder networks     x      
The involvement of new stakeholder types in existing networks     x